[CS224n] Lecture8. RNN and language model
1. Traditional 한 Language modeling 언어 모델이란 건 사실 간단히 말하면, 연속적인 단어들이 주어졌을 때 그 sequence 에 대한 probability 를 주는 모델이다. 이런 언어 모델을 다양한 NLP task 에 함께 쓰이는데 예를 들어 자동 번역 모델이라든지, 음성 인식 모델에 쓰이곤 한다. 이 언어 모델을 word order 이나 word choice 에 있어서 좀 더 자주 쓰이는 패턴의 phrases 에 더 높은 probability 를 부여하는 모델이다. 그렇다면 기존의 언어 모델은 어떻게 만들어졌느냐! 간단하게 말하면 count 를 이용해서 만들어졌다. 노가다처럼 들리지만, 주어진 corpus 에서 window 를 옮겨가면서 모든 단어에 대한 co-occurre..
NLP /CS224n
2019. 5. 11. 22:41
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- GPTZero
- Elmo
- Contextual Embedding
- 벡터
- weight vector
- language model
- neurone
- Statistical Language Model
- cs224n
- transformer
- Attention Mechanism
- 뉴럴넷
- LM
- 언어모델
- Pre-trained LM
- Neural Language Model
- neural network
- 뉴런
- nlp
- Bert
- 워터마킹
- word embedding
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함